BICSI CECs

This course has been approved for CEC credits by BICSI. Please read below for a breakdown of the credits that we offer for this course. For more information regarding BICSI please visit our website.

Course Description

This Hands-On 3-day course has been customized to combine two of our most requested Fiber Optic training courses (Certification is available upon request)

Hands-On Fiber Optic ISP / Inside Plant-Local Area Cable Networks Termination
Hands-On Fiber Optic OSP / Outside Plant Splicing, & Testing

Our course is designed to provide technicians with a practical understanding of fiber optic theory and fiber applications in (ISP)Local Area Network, Security and Closed Circuit TV systems and more in-depth Hands-On focus on a wider array of (OSP) Fiber Optic systems and components, installation, splicing, testing and maintenance techniques.

This training is geared for the voice, video and data technician, supervisor or engineer who requires a more in-depth working knowledge of long distance communication using fiber optic technology. The course material prepares each student to skillfully work with fiber optic splicing, termination, testing and troubleshooting equipment in a wide variety of commonly found work conditions in an Inside Plant and Outside Plant environment.

A Fiber Optic Installer has a general understanding of optical fiber installation,
connectorization, splicing, and testing, is familiar with optical fiber, connector, and splice performance characteristics described in TIA/EIA-568B, ITU-T G.671, ITU-T G.652 and Telcordia GR-326 A Fiber Optic Installer can perform connector endface evaluation as described in TIA/EIA-455-57B, is proficient in optical loss testing as described in TIA/EIA-526-14A, and understands the installation requirements described in articles 770 and 250 of the National Electrical Code. A Fiber Optic Installer is proficient at the installation of connectors on various types fiber of optic cables using various types of epoxies, and can perform mechanical and fusion splicing and more...

This course is Accredited by the International Certification Accreditation Council (ICAC)

Optional ETA FOI Exam (Can be administered at the training location upon request as part of the course, fees apply.)

Type of Certification Stand-Alone
Renewal / Maintenance Required
Certification Term 4 Yrs
Hands-On Required Yes

Students Will Learn

- The History Of Fiber Optics & Evolution Of Fiber Systems.
- Fiber Manufacturing Methods.
- Fiber Optic Theory And Waveguide Functions.
- Singlemode (OSP) And Multimode (ISP) Fiber Types.
- The Causes Of Attenuation, Optical Reflection And Refraction.
- Optical Dispersion Characteristics And Pulse Spreading Issues.
- Loose Tube And Unitube Style Trunk Cables
- Distribution And Feeder Cables.
- Fusion Splicer Applications And Fiber Alignment Systems
- Mechanical Splicing Uses And Applications
- Optical Connector Styles And Applications
- Back Reflection Issues And Angled Physical Contact Connectors
- Patch Panels And Functions For Distribution And Transmission
- ISP/OSP Style Splice Closure Styles And Function
- Cable Entry Methods And Splitter Configurations
- Drop Cable Connectivity And Security
- Cable Installation Methods As Direct Bury, Aerial And Ducted
- Emergency Restoration Issues, Future Planning, Restoration Kits
- Safety Practices
- Topologies For Urban And Rural Communities
- Splitters, ONTs/OLTs/ODNs
- Intro To Optical Testing And Troubleshooting.
- Visible Light Sources, OTDRs And Power Meters
- Testing Methods For ISP/OSP Systems
- OTDR Test Functions And Trace Interpretation
- Optical Loss Testing Methods
- And More

Target Audience

Inside Plant/Outside Plant technicians, contractors, union craftsmen, electricians, technicians, installers, splicers, engineers, facilities managers, telecom managers and anyone involved in repairing, installing, maintaining, designing, evaluating, or provisioning Fiber Optic Cables and Optical Networks.

Prerequisites

A basic understanding of telecommunications.
This information can be obtained in our courses below or equivalent knowledge
TeleCom Networks Today "II"
Basic Telephony & Telecom Electronics

Course Outline
MODULE I FIBER OPTIC GENERAL STUDIES

INTRODUCTION
• Common Industry Terminology
• History of Fiber Optics
• Advantages/Disadvantages of Fiber Optics
• Basics of a Fiber Optic Communications System
• Fiber Types and Manufacturing Processes (VIDEO)
• Typical Transmission Rates for Voice, Video & Data Applications
• System Topologies
• Fiber Optic Standards
• And More...

THEORY TOPICS
• Theory of Light
• Electromagnetic Spectrum
• Total Internal Reflection (Singlemode)
• Refraction (Multimode)
• Index of Refraction (Refractive Index)
• Light Source’s (LED’s & LASER’s)
• Power (dbm/watts)
• Core/Cladding/Coatings
• Numerical Aperture
• Macro/Microbends
• Wave Division Multiplexing (WDM, CWDM,DWDM, etc.)
• Optical Switching Fundamentals
• And More...

FIBER TOPICS
• Optical Fiber Types
• Typical Fiber Specifications
• Multimode Optical Fibers
• Singlemode Optical Fibers
• Dispersion Characteristics
• Modal Dispersion
• Chromatic Dispersion
• And More...

FIBER CABLE TYPES
• Outside Plant
• Inside Plant
• Loose tube Gel Filled (OSP)
• Tight Buffered Distribution (ISP)
• Tight Buffered Breakout (ISP)
• Jumper Cables and Hybrids styles
• Reverse Oscillation Locator (OSP)
• Fiber Color Code
• And More...

MODULE II FIBER OPTIC SAFETY ISSUES

SAFETY FIRST
• LASER Safety and Warning labels
• Types of LASER’s
• LASER Output Power Levels
• Eye Safety Precautions
• Safe Glass Disposal Practices
• Food and Drinks Not Safe
• Proper Person Cleanliness
• Safe Work Surroundings
• Confined Spaces Issues

TOOLS:
• Cable Jacket
• Fiber Coating Strippers
• Mid-Entry Tools
• Ring Tools
• Tube Splitters
• Knives
• Slitters
• Scissors/Snips
• Safety Tweezers
• And More...

MODULE III FIBER OPTIC CABLE INSTALLATION

PROPER PLANNING
• Project Considerations
• Cable Pre-testing
• Cable Reels Identification and Handling
• Proper Cable Pulling Techniques
• Outdoor Cable Design Characteristics
• Direct Bury Cable Installation
• Directional Boring Methods
• Buried Cable Depths
• Man Holes and Vaults
• Cable Pulling Specifications
• Tensile Strength and Bend Radius
• Avoiding Installation Obstacles
• Grounding and Bonding Fiber Cables
• Identifying Cable Types
• Work Area Protection Issues
• And More...

MODULE IV FIBER OPTIC CONNECTORS

• Connector Types
• Different types
• Use of connectors
• ST Style Connector Assembly; Hand and/or Machine Polishing and Inspection
• SC Style Connector Assembly; Hand and/or Machine Polishing and Inspection
• Also Types: FC, LC, MIL-C Series, Biconic, etc.

FIBER OPTIC ENCLOSURES
• Applications
• Patch Panels
• Distribution of Fiber
• LAN
• Media outlets
• Fiber Management Bays

INSTALLING CONNECTORS
• Connector tools
• Each attendee will install connectors

TESTING CONNECTORS AND JUMPER LOSS
• Measure loss of previously installed connectors
• Test loss of jumpers
• Fiber Testing Parameters
• Continuity Testing

MODULE V FIBER OPTIC SPlicing

SPLICING
• Mechanical and Fusion Splicing
• Fusion Splicer Types and Operations
• Precision Cleaver Operation
• Set-up Fusion Splicer and Cleaver Work Stations
• Practice Fiber Stripping, Cleaning and Cleaving
• Practice In-Line Fusion Splicing
• Practice Pigtail Fusion Splicing
• Qualify Acceptable Splices
• and More...

MODULE VI FIBER OPTIC TESTING

TESTING INFORMATION
• The dB Scale and Units of Loss
• OTDR Functions for Testing
• OTDR Testing for Splices, Distances and Back Reflection
• OTDR Trace Guidelines
• The Dead Zone
• Trace Events and Interpretation
• Testing at Various Wavelengths
• System Loss Parameters
• Calculating System Loss
• Total System OTDR Testing
• Optical Loss Test Set’s (OLTS)
• Referencing the Test Set First
• Measuring Cable System Loss
• Documenting Test results
• And more...

Notes

Fiber Optic Certification and On-Site Testing Available upon request.

Delivery Method
Instructor led with numerous Hands-On labs and exercises.

Equipment Requirements
(This apply's to our hands-on courses only)

BTS always provides equipment to have a very successful Hands-On course. BTS also encourages all attendees to bring their own equipment to the course. This will provide attendees the opportunity to incorporate their own gear into the labs and gain valuable training using their specific equipment.

Course Length

3 Days